Search results for "Cosmological parameters from CMBR"

showing 5 items of 5 documents

Cosmological bounds on neutrino statistics

2018

We consider the phenomenological implications of the violation of the Pauli exclusion principle for neutrinos, focusing on cosmological observables such as the spectrum of Cosmic Microwave Background anisotropies, Baryon Acoustic Oscillations and the primordial abundances of light elements. Neutrinos that behave (at least partly) as bosonic particles have a modified equilibrium distribution function that implies a different influence on the evolution of the Universe that, in the case of massive neutrinos, can not be simply parametrized by a change in the effective number of neutrinos. Our results show that, despite the precision of the available cosmological data, only very weak bounds can …

AstrofísicaCosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaCosmic microwave backgroundFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsNeutrino properties01 natural sciencesPartícules (Física nuclear)symbols.namesakePauli exclusion principleHigh Energy Physics - Phenomenology (hep-ph)Big Bang nucleosynthesis0103 physical sciencesStatisticsAnisotropy010303 astronomy & astrophysicsPhysicsCosmologia010308 nuclear & particles physicsBig bang nucleosynthesisSpectrum (functional analysis)High Energy Physics::PhenomenologyObservableAstronomy and AstrophysicsCosmological neutrinos neutrino properties big bang nucleosynthesis cosmological parameters from CMBRCosmological parameters from CMBRHigh Energy Physics - Phenomenologysymbolsastro-ph.COBig bang nucleosynthesis; Cosmological neutrinos; Cosmological parameters from CMBR; Neutrino properties; astro-ph.CO; astro-ph.CO; High Energy Physics - Phenomenology; Astronomy and AstrophysicsCosmological neutrinosHigh Energy Physics::ExperimentBaryon acoustic oscillationsNeutrinoAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

CMB spectral distortions in generic two-field models

2017

We investigate the CMB $\mu$ distortion in models where two uncorrelated sources contribute to primordial perturbations. We parameterise each source by an amplitude, tilt, running and running of the running. We perform a detailed analysis of the distribution signal as function of the model parameters, highlighting the differences compared to single-source models. As a specific example, we also investigate the mixed inflaton-curvaton scenario. We find that the $\mu$ distortion could efficiently break degeneracies of curvaton parameters especially when combined with future sensitivity of probing the tensor-to-scalar ratio $r$. For example, assuming bounds $\mu < 0.5 \times 10^{-8}$ and $r<0.0…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Field (physics)ART. NO. 023505Cosmic microwave backgroundFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics114 Physical sciences01 natural sciencesCosmologyHigh Energy Physics - Phenomenology (hep-ph)EARLY UNIVERSEDistortion0103 physical sciencesphysics of the early universeENERGY-RELEASEStatistical physicsSensitivity (control systems)inflation010303 astronomy & astrophysicsPhysicsInflation (cosmology)010308 nuclear & particles physicscosmological parameters from CMBRCURVATURE PERTURBATIONCONSTRAINTSAstronomy and AstrophysicsFunction (mathematics)115 Astronomy Space scienceMIXED INFLATONHigh Energy Physics - PhenomenologyDENSITY PERTURBATIONSAmplitudeCOSMOLOGYRADIATIONAstrophysics - Cosmology and Nongalactic AstrophysicsGENERATIONJournal of Cosmology and Astroparticle Physics
researchProduct

The dark side of curvature

2009

Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d(A)(z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Omega(k) in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d(A)(z) up to suffici…

Equation of stateCosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmic microwave backgroundFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsCurvature01 natural sciencessymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesDark energy experiments010303 astronomy & astrophysicsPhysics010308 nuclear & particles physicsAngular diameter distanceAstronomy and AstrophysicsRedshiftCosmological parameters from CMBRHigh Energy Physics - PhenomenologysymbolsDark energyBaryon acoustic-oscillationsBaryon acoustic oscillationsHubble's lawAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

How to relax the cosmological neutrino mass bound

2019

We study the impact of non-standard momentum distributions of cosmic neutrinos on the anisotropy spectrum of the cosmic microwave background and the matter power spectrum of the large scale structure. We show that the neutrino distribution has almost no unique observable imprint, as it is almost entirely degenerate with the effective number of neutrino flavours, $N_{\mathrm{eff}}$, and the neutrino mass, $m_{\nu}$. Performing a Markov chain Monte Carlo analysis with current cosmological data, we demonstrate that the neutrino mass bound heavily depends on the assumed momentum distribution of relic neutrinos. The message of this work is simple and has to our knowledge not been pointed out cle…

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)cosmological neutrinosPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaCosmic microwave backgroundFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicscosmological parameters from LSS01 natural sciencesCosmologyMomentumsymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)cosmological0103 physical sciencesPhysicsCOSMIC cancer database010308 nuclear & particles physicsMatter power spectrumHigh Energy Physics::Phenomenologycosmological parameters from CMBRAstronomy and AstrophysicsObservableMarkov chain Monte Carloneutrino masses from cosmologyHigh Energy Physics - Phenomenologyparameters from CMBRsymbolsHigh Energy Physics::ExperimentNeutrinoAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Cosmic microwave background constraints on secret interactions among sterile neutrinos

2017

Secret contact interactions among eV sterile neutrinos, mediated by a massive gauge boson $X$ (with $M_X \ll M_W$), and characterized by a gauge coupling $g_X$, have been proposed as a mean to reconcile cosmological observations and short-baseline laboratory anomalies. We constrain this scenario using the latest Planck data on Cosmic Microwave Background anisotropies, and measurements of baryon acoustic oscillations (BAO). We consistently include the effect of secret interactions on cosmological perturbations, namely the increased density and pressure fluctuations in the neutrino fluid, and still find a severe tension between the secret interaction framework and cosmology. In fact, taking i…

Sterile neutrinoParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)cosmological neutrinosDark matterCosmic microwave backgroundFOS: Physical sciencescosmological neutrinos; cosmological parameters from CMBR; neutrino masses from cosmology; neutrino properties; Astronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesNOsymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPlanck010303 astronomy & astrophysicsneutrino propertiesPhysicsGauge bosoncosmological neutrino010308 nuclear & particles physicsHigh Energy Physics::Phenomenologycosmological parameters from CMBRAstronomy and Astrophysicsneutrino masses from cosmologyCoupling (probability)3. Good healthHigh Energy Physics - Phenomenology13. Climate actionsymbolsHigh Energy Physics::ExperimentBaryon acoustic oscillationsNeutrinoAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct